A user’s guide for identifying rice paddocks using GIS and remote sensing at Coleambally Irrigation Area, NSW

Thomas G. Van Niel and Tim R. McVicar

CSIRO Land and Water

CSIRO Land and Water Client Report

A report for Coleambally Irrigation Co–operative Limited (CICL) for research conducted by the CRC for Sustainable Rice Production Project 1105

November 2004
A user's guide for identifying rice paddocks using GIS and remote sensing at Coleambally Irrigation Area, NSW

Thomas G. Van Niel a,c, Tim R. McVicar b

a CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia.
b CSIRO Land and Water, GPO Box 1666, Canberra, ACT 2601, Australia.
c Cooperative Research Centre for Sustainable Rice Production, Yanco, NSW 2703, Australia.

CSIRO Land and Water Client Report
November 2004

Copyright and Disclaimer

© 2004 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO Land and Water.

Important Disclaimer:
CSIRO Land and Water advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO Land and Water (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

Cover Photograph:
Description: Enhanced Thematic Mapper (ETM) image over the Coleambally Irrigation Area acquired on 13 February 2002. Wavelengths displayed are 0.7199 µm (red colour gun), 0.6614 µm (green colour gun), and 0.5610 µm (blue colour gun).

© 2004 CSIRO
Acknowledgements

This research was funded by the CRC for Sustainable Rice Production (Rice CRC) and CSIRO Land and Water. Please note, mention of commercial products in this work does not imply an endorsement of these products by either CSIRO or the Rice CRC. Many thanks to Reuben Robinson and David Klienert of Coleambally Irrigation Co-operative Limited (CICL) who provided helpful comments on the manuscript and learned rice identification from remote sensing over the telephone. The new section 8 about rice administration was written by Rueben Robinson and David Klienert during their review of the manuscript.
Executive Summary

Rice administration at the Coleambally Irrigation Area (CIA), New South Wales (NSW), is an important aspect of yearly management. This process relies upon identification of rice paddocks and summarisation of each landholder’s rice area. In the past, rice administration has been strictly based on high resolution aerial photography because, although satellite remote sensing can accurately identify rice, (1) its spatial accuracy has not been suitable for paddock-level management and (2) image processing has required a great deal of training. Recently, greatly simplified techniques have been developed to accurately classify rice removing one of the impediments to using satellite remote sensing for rice administration. If these results can be merged with spatially accurate paddock boundaries, then the other impediment is also removed. This report describes the methods required to both accurately classify rice from satellite remote sensing and merge these results with highly accurate vector paddock boundaries, thus providing high attribute and spatial accuracy in a way that is both more automated, and less expensive.

The format of this paper and the description of the procedures are informal and non-technical wherever possible. The examples provided are from data acquired in the 2002-03 growing season and are conducted solely in ArcView, the generic GIS software already used by Coleambally Irrigation Co-operative Limited (CICL). However, these general techniques could easily be adapted to other GIS or image processing software packages in the future. Also, these techniques are specifically designed to work best under the management practices existing at the CIA at the time of publication. That is, under the current management practices, rice is easily identified from all other crops in late November when the water of the permanently flooded rice paddocks is drastically different from the other paddock’s surfaces. If management practices significantly change in the future (e.g., if rice is predominantly grown on beds) then the specifics of this research will need to be adjusted. For more details, see the associated scientific publications of this work regarding: (1) spatial accuracy of aerial photography and GIS data (Van Niel and McVicar 2000, 2001, 2002); and (2) rice identification using satellite remote sensing (Van Niel and McVicar 2003; Van Niel et al. 2003).
Table of Contents

Copyright and Disclaimer ... i
Acknowledgements ... ii
Executive Summary .. iii
1 Introduction .. 1
2 Selection and Purchase of TM Imagery from ACRES Website 3
 2.1 Introduction ... 3
 2.2 ACRES website .. 3
3 Rudimentary Geometric Offset ... 7
 3.1 Introduction ... 7
 3.2 Importing Images into ArcView ... 7
 3.3 Comparison of imagery with DGPS roads GIS data 10
4 Ground Validation, Classification Accuracy, and Training Sets 13
 4.1 Introduction ... 13
 4.2 Defining the ground validation dataset 13
 4.3 Defining the rice and non-rice training sets 14
 4.4 Estimating classification accuracy 15
5 Updating Paddock Boundaries .. 19
 5.1 Introduction ... 19
 5.2 Defining flooded areas on the imagery 20
6 Identifying Summer Rice Paddocks (Optional Step) 24
 6.1 Introduction ... 24
 6.2 Calculating the mean ETM band 5 value for every paddock 24
 6.3 Classifying each paddock to rice or non-rice 26
7 Identifying Winter Cereal Paddocks for Exclusion (Optional Step) 28
 7.1 Introduction ... 28
 7.2 Calculating the NDVI on an October ETM image 28
 7.3 Define small training set of known winter cereal and non-cropped paddocks ... 30
 7.4 Calculate mean NDVI for each paddock using the sum_grid.ave program ... 33
 7.5 Identify and eliminate rice paddocks that had a winter crop 35
8 Rice administration ... 38
 8.1 Adding attributes to rice areas .. 38
 8.2 Location of rice paddocks on suitable ground 39
 8.3 Total rice area and rice water usage 39
References ... 40
Appendix A ... 42
Appendix B ... 43
Appendix C ... 51
1 Introduction

The strengths of moderate to coarse resolution satellite remote sensing in both identifying crop types and estimating crop area have resulted in the widespread use of this technology for the monitoring of agriculture (e.g., Barbosa et al. 1996; Fang 1998). Although the spectral information and cost of these remote sensing data are attractive, their spatial resolutions are often perceived as being inadequate for agricultural management at either the individual holding or the paddock level (Quarmby et al. 1992). Conversely, fine resolution remote sensing (e.g., aerial photography) very often contain spatial detail that will allow management decisions to be made at the paddock level (Van Niel and McVicar 2001), but these data can be expensive to acquire and subsequent manual digitisation of crop areas is labour intensive when done every year.

Because agricultural systems are generally very structured when compared to natural systems, land cover and management practices can be assigned within discrete paddock boundaries. Also, the more regulated agricultural systems (e.g., irrigation areas) have paddock boundaries that are practically temporally invariant. The combination of these characteristics can result in both very high attribute and spatial accuracies when fine resolution imagery is used. However, mapping relatively large areas every year to such a fine detail can be particularly costly. Also, it is an inefficient spatial exercise to map invariant features at a high spatial resolution more than once. Given the ordered nature of agricultural systems, the relative strengths of fine and coarse resolution spatial data can often be integrated successfully for optimising accuracy, cost, and effort of crop area assessment (although this is rarely done).

High crop identification accuracy can be achieved using relatively coarse resolution satellite remote sensing data, especially when it is merged with contextual information (Pedley and Curran 1991; Moody 1997; Aplin et al. 1999; Tso and Mather 1999; Stuckens et al. 2000). Furthermore, spatially accurate paddock boundaries delineated from either fine resolution remote sensing or Global Positioning System (GPS) data can then be merged with this high accuracy crop identification information. In this example, the temporally invariant features (the paddock boundaries) need to be mapped very accurately only once (or infrequently). Conversely, the temporally variant features (uniform crop types) found within the invariant boundaries can be mapped at a more coarse spatial resolution without loss of classification accuracy. In this way temporally variant and invariant features can be mapped more efficiently while resultant crop classifications maintain both high attribute and spatial accuracy (see figure 1). This is the common situation for most farms at the Coleambally Irrigation Area (CIA), where paddock boundaries change very little from year to year, but the crop attribute is frequently changing.

The accurate measurement of rice area to the individual holding level is important for management of groundwater recharge in the irrigation areas of southern New South Wales (NSW) (Barrs and Prathapar 1994; Humphreys et al. 1994), and has resulted in yearly rice administration responsibilities of the local irrigation managers. Both the accurate identification of rice and the estimation of its total area have been achieved in NSW with satellite remote sensing (McCloy et al. 1987; Barrs and Prathapar 1994; Barrs and Prathapar 1996). However, highly accurate estimation of total rice area, often exceeding 99% (e.g., McCloy et al. 1987; Barrs and Prathapar 1996), can be attributed to compensating negative and positive errors at the paddock level (Barrs and Prathapar 1996; Van Niel and McVicar 2001). Wide discrepancies between rice area estimations at both the district level (McCloy et al. 1987), and the individual holding level (Barrs and Prathapar 1996) can be exceedingly large and, in the past, has prevented the adoption of satellite remote sensing for the yearly monitoring of rice areas in both the Murrumbidgee Irrigation Area (MIA) and the CIA.
Because high spatial accuracy is important for management, both the MIA and CIA have primarily used the interpretation of high-resolution aerial photography to monitor rice crop areas every year. However, recent research at the CIA regarding: (1) spatial accuracy of aerial photography and GIS data (Van Niel and McVicar 2000, 2001, 2002); and (2) rice identification using satellite remote sensing (Van Niel and McVicar 2003; Van Niel et al. 2003) has moved satellite-based remote sensing one step closer to an operational system in the region. This research has been further refined and simplified in collaboration with staff from the Coleambally Irrigation Co-operative Limited (CICL) over the 2002-03 and 2003-04 growing seasons during which satellite remote sensing was used to complete rice administration at the CIA. The reader is also referred to a review of remote sensing of rice-based systems, where these and other issues are described (Van Niel and McVicar 2004a).

This report, then, outlines the steps required to merge the high spatial accuracy paddock boundaries defined from either high-resolution digital aerial photography or a GPS in the field, with high attribute accuracy rice classifications from moderately coarse (and relatively inexpensive) satellite imagery in order to accomplish yearly rice administration. It also demonstrates that by taking advantage of certain strengths of coarse- and fine-scale spatial data, the relationship between cost and accuracy can be improved by the use of satellite remote sensing in conjunction with highly accurate paddock boundaries.
2 Selection and Purchase of TM Imagery from ACRES Website

2.1 Introduction

The timing of image acquisition can greatly influence the results of satellite image classifications (Van Niel and McVicar 2004b). The first problem in any remote sensing application is defining when discrimination of the particular target of interest (e.g., rice) is best. We have seen at the CIA that best rice discrimination occurs in late November due to the water of the ponded rice paddocks being easily identified when compared to all other areas. The second problem is acquiring an image during the desired temporal window. This is not usually a problem at the CIA, however, because it is completely contained within the overlap area of two Landsat scenes. This means that the main CIA is imaged about every 8 days instead of every 16 days (like in non-overlap areas). This provides twice as many opportunities to acquire cloud-free imagery in the desired timeframe, and thus greatly enhances the operational management of satellite remote sensing at the CIA. To define what images have been acquired and to order an image, the Australian Centre for REmote Sesning (ACRES) website is extremely useful because they provide estimates of cloud cover and a “quicklook” image of the entire scene. In this section, we describe the steps necessary to access the ACRES website and how to define imagery for purchasing.

2.2 ACRES website

- Click on the “Digital Catalogue” link on the left-hand side of the homepage
- Click on the “Please Log In” link in the green tab along the bottom of this page
- Click on the “Guest User” radio button and Click “Connect”
- Now that you are into the main search page, the first thing to do is to close the “Location” tab so your screen looks like the picture below. This is so we can refine the search.
• Now Click on the “Databases” tab along the top of the page.
• On the databases page, select “ACRES [Landsat 4, 5, and 7] – Australian Centre for Remote Sensing”, but DO NOT click on Search yet.
• Next, click on the “Refine” tab along the top of the page.
• On the refine page, adjust the search so only “Landsat 5” and “TM” are highlighted (for the 2002-03 growing season, Landsat 7 was still operating and was chosen, see picture below. For 2003-04 season and after, Landsat 5 should be chosen.).
• Then, type in the valid paths and row, Path: 92 to 93, and Row: 84
• Choose the Month and Year you would like to search under the “Season” section, e.g., Oct and Nov, 2002.
• Then Click on the “Search” button (see the picture below).

• This brings up a list of images within the specified criterion with relevant info in the table on the left and a quicklook jpeg image on the right (see below).
If you click on one of the quicklook small images, you go to a new page, where you can zoom in on the image to make sure there are no small clouds or haze over the CIA (see below)
• Make sure the “Image” radio button is selected (see above). Now you can zoom in to the CIA by clicking near its centre a couple of times. This image looks good. We could buy it if we wanted. All we need is the date and Path/Row (these are listed in the table, see the above image).

• Now order the image. CICL purchases imagery from Resource Industry Associates (RIA) in Canberra. John Lee is the contact (02 6260 5377). John accepts the ACRES order form – see a copy of the order form in Appendix A. The imagery can be paid for by credit card using the form that the RIA provide – this has to be arranged through the Company Secretary.

• By going through this process for the 2002-2003 growing season, we purchased both an early October image (henceforth called, ‘the October image’), and a late November image (henceforth called, ‘the November image’). These two images are referred to throughout this text – the November image is used to identify ponded areas (i.e., rice), while the October image can then be used to refine this classification of rice by eliminating confusion between the previous winter cereal crops and the current summer rice crop. In the 2003-2004 growing season, only one image was purchased near the late November temporal window as it was decided (by CICL staff) that the optional October image would not be used.
3 Rudimentary Geometric Offset

3.1 Introduction
The ACRES map-oriented data is provided with a geometric model already applied to it, and results in reasonably accurate positioning (e.g., within 50 to 100 metres) within the projection defined in the selection and purchase of imagery (e.g., AMG66, see above). However, when comparing any subsequent paddock boundaries to the imagery (especially if more than one image is considered) it is advisable to have a better correction that what is provided. The geometric model applied by ACRES results in good internal geometry, which means that a simple x, y offset can be applied to the imagery in order to “nudge” the image into place. This nudge is easy, it only requires a positionally accurate GIS dataset as a reference, ArcView, and a text editor. In order to apply the shift we will cover:

- Importing images into ArcView; and
- Comparison of imagery to DGPS roads GIS layer.

3.2 Importing Images into ArcView
ArcView recognises uncompressed, band interleaved by line (bil), band interleaved by pixel (bip), and band sequential (bsq) image data. These images, however, require a standard header (text) file specifying image parameters. To demonstrate, we will be using Band 5 (central wavelength, 1650 nm) for the late November 2002 image you purchased as this will be the main input into the rice/non-rice classification later. This image was in bsq format but your image will likely be in bil format. Whenever you see a bsq image in the pictures in this document you will need to be aware that this also refers to your bil image. This requires a few steps.

- **Copy** the image data from the ACRES CD to a local directory. The imagery comes as band interleaved by line (BIL). This format allows one file to contain the data for all bands of reflectance.
- **Next, open** the template header file using a text editor (e.g., Word, Notepad).

The contents of the template header file should look something like this:

```plaintext
; ArcView Image Information
NCOLS    2722
NROWS    2080
NBANDS   1
NBITS    8
LAYOUT    BSQ
BYTEORDER I
SKIPBYTES  0
MAPUNITS METERS
ULXMAP    351712.500
ULYMAP    6168837.500
XDIM      25.00000
YDIM      25.00000
```
Where **NCOLS, NROWS, NBANDS, and NBITS** represents the number of columns, rows, bands, and bits represented in the image, **LAYOUT** is the file format, **ULXMAP, ULYMAP** are the upper left x and y coordinates in map space and **XDIM and YDIM** are the pixel size in map units (i.e., metres).

- Now, you need to put the initial ULXMAP and ULYMAP coordinates based on the ACRES geometric correction into the hdr file (if not already there)
- This requires copying and pasting the coordinates from the file called “header.hrf” which is found in the same directory as the imagery for 27 November 2002. The “header.hrf” file is a text file and can be opened in any text editor or even Word. The contents of this file for the November image are shown below with the UL coordinates coloured red. These are the values that need to be pasted into “nov_bnd5.hdr”. As can be seen, the template was made with these coordinates, so we don’t have to worry about actually changing it this first time (but you will need to do it next year, or for this year’s October image):

```plaintext
REQ ID =01026_02             LOC =093/0840000       ACQUISITION DATE =20021127
SATELLITE =LANDSAT7   SENSOR =ETM+       SENSOR MODE =NORMAL LOOK ANGLE =  0.00
LOCATION =                     ACQUISITION DATE =
SATELLITE =                 SENSOR =                 SENSOR MODE =                 LOOK ANGLE =
LOCATION =                        ACQUISITION DATE =
SATELLITE =                 SENSOR =                 SENSOR MODE =                 LOOK ANGLE =
LOCATION =                        ACQUISITION DATE =
SATELLITE =                 SENSOR =                 SENSOR MODE =                 LOOK ANGLE =
PRODUCT TYPE =MAP ORIENTED       PRODUCT SIZE =SUBSCENE
TYPE OF PROCESSING =SYSTEMATIC  RESAMPLING =CC
VOLUME ## IN SET =01/01 PIXELS PER LINE = 2722 LINES PER BAND = 2080/ 2080
START LINE # =   1 BLOCKING FACTOR = 1 REC SIZE =   2722 PIXEL SIZE = 25.00
OUTPUT BITS PER PIXEL = 8 ACQUIRED BITS PER PIXEL = 8
BANDS PRESENT =123457
FILENAME =L71093084_08420021127_B10.FSTFILENAME =L71093084_08420021127_B20.FST
FILENAME =L71093084_08420021127_B30.FSTFILENAME =L71093084_08420021127_B40.FST
FILENAME =L71093084_08420021127_B50.FSTFILENAME =L72093084_08420021127_B70.FST

REV   L7A
BIASES AND GAINS IN ASCENDING BAND NUMBER ORDER
-6.199996948242188     0.775686264038086
-6.399993896484375     0.795686244964600
-5.000000000000000     0.619215667247772
-5.100006103515625     0.965490221977234
-0.999998092651367     0.125725477938884
-0.350000381469727     0.043725494295359
0.000000000000000     0.000000000000000
0.000000000000000     0.000000000000000
```
GEOMETRIC DATA MAP PROJECTION = UTM ELLIPSOID = Australian National DATUM = AGD66
USGS PROJECTION PARAMETERS = 6378160.000000000000000 6356774.719195305400000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 USGS MAP ZONE = 55

UL = 1452257.5446E 343641.3657S 351712.500 616837.500
UR = 1460728.1294E 343708.6552S 419737.500 616837.500
LR = 1460710.2050E 350515.7448S 419737.500 6116862.500
LL = 1452224.4454E 350447.9781S 351712.500 6116862.500
CENTER = 1450519.0279E 344516.3703S 325051.989 6152498.930 -1065 655
OFFSET = -336 ORIENTATION ANGLE = 0.00
SUN ELEVATION ANGLE = 59.2 SUN AZIMUTH ANGLE = 72.3

- Now add the image theme into ArcView, make sure the “Data Source Types:” is set to “Image Data Source”. The .bil image should be visible.
• When the image is added to the view you will need to double click on the legend to change it to single band, Band 5.
• The image should appear as a grey scale with approximate map coordinates (AMG66 – see below).

3.3 Comparison of imagery with DGPS roads GIS data

Now that the initial geometric coordinates are placed in the header file and the image is read into ArcView, we want to compare it to a very accurate GIS layer. This layer is the roads network digitised using NSW Department of Agriculture’s DGPS unit in February 2001. These lines should be within about 1 to 2 metres of the centreline of almost every road within the main CIA boundary, so they provide lots of reference points to compare the placement of our imagery. The roads shapefile is also in AMG66. For details of this dataset see Van Niel and McVicar (2002). This step requires adding the GPS roads theme to the same view that the imagery is in, changing the colour to something easily seen, and then altering the ULXMAP and ULYMAP values in the image header file until you are satisfied with how the roads lines up with the image. Please note, the match should be good throughout the...
entire main CIA boundary. Also, be careful not to mix up canals and side roads with the main roads which are represented in the shapefile.

- Add the GPS roads shapefile to the view
- Zoom in to an appropriate scale (make sure the view map units are set to meters – I like about 1:20000 and usually start somewhere around Anderson and Frazer Roads, but this is arbitrary)
- As can be seen below, the ACRES correction is not too bad, but the roads don’t quite line up. It looks like the Y direction is worse than the X.
- Change the coordinates until you are happy with the match over the whole CIA. Note, you will have to delete the theme and add it again to the view each time you change the header file coordinates or ArcView will not make note of the change to the coordinates. Also, it probably doesn’t make sense to be more precise than about 0.5 of a pixel or in this case 12.5 metres.

I did this and was happy with the following coordinates (see pic below):

- ULXMAP 351762.500
- ULYMAP 6168937.500
- This represents a shift of 50 metres in the x direction and 100 metres in the y direction, resulting in a good match
Note that an addition to the X coordinate will result in the image moving right and a subtraction will result in it moving left. An addition to the Y coordinate will result in it moving up and a subtraction will result in it moving down.
4 Ground Validation, Classification Accuracy, and Training Sets

4.1 Introduction

One of the most important things in the classification of rice is defining an appropriate ground validation or reference dataset. This reference dataset will be used for two purposes: (i) estimation of rice classification accuracy; and (ii) defining two small training sets which will be used to determine the threshold used to classify paddocks as either rice or non-rice. The following topics, then, need more detailed discussion:

- Defining the ground validation dataset;
- Defining the rice and non-rice training sets; and
- Estimating classification accuracy.

4.2 Defining the ground validation dataset

The first step is to define the base ground validation set of paddocks. This can be done by sending out simple surveys to landholders. Since this has been done for several years in a row, there is a set of Word documents to use including the surveys and farm maps. These can be faxed to the landholders, who usually respond quickly if the survey is relatively simple. Maps can be found in "NRE on Sol"\Rice\Survey forms-cropping. Before faxing and mailing the forms out to the landholders it is necessary to update the year at the top of the form, and the covering note. For the 2002-2003 growing season, we had a good response where the crop types of 73 paddocks were known. Since 40 of these were rice, a fairly even sample of rice and non-rice was also achieved, which is one of the goals. Arbitrarily, it would be good to have at least 30 rice and 30 non-rice paddocks to estimate the classification accuracy from. Since 5 rice paddocks and 5 non-rice paddocks are used for training the classification (see below) and cannot be used for both training the classification and estimating it’s accuracy, we will (ideally) need at least 35 rice and 35 non-rice paddocks from this survey. If we do have 30 of each class for accuracy estimation, it means that although a bit coarse, the precision of our accuracy measurement is good enough to detect changes of 1.67% (1/60). That is, the smallest increment of change in our accuracy estimate is 1.67%, so if one paddock out of the 60 is misclassified, our estimate will be 100 – 1.67, or 98.33%, if 2 are misclassified it will be 100 – 3.33, or 96.67%.

- The known paddocks should be put into a shapefile. These known paddocks should also have current boundaries. Therefore, the boundaries might need updating (for details, see section 5 regarding updating paddock boundaries).
- Also, it is good to make sure that the attributes of this shapefile are in order. For the subsequent classification accuracy assessment, below, a field of crop types using the code of “R” for rice and “NR” for non-rice is required. In my shapefile, this field is called “Crop2003”, see the figure below. It is not a bad idea also to keep track of which areal photos the paddock was digitised from, who digitised it, and other details as you see fit (e.g., variety if known, etc…).
4.3 Defining the rice and non-rice training sets

Next, two shapefiles containing a small number of paddocks (e.g., 5) whose boundaries are known to be current and whose crop types are also known will be defined. These small subsets of paddocks are known as training sets and will be used to derive the threshold that will be used to define which pixels or paddocks are rice and which are non-rice. These training sets can be defined in various ways. For example, they can come from landholder surveys, or from field observations. In this case, we used landholder surveys to determine paddocks where the crop types were known (as above). From these, 5 rice and 5 non-rice paddocks were arbitrarily selected and saved to separate shapefiles, see figure below (e.g., 02_03_r_trn.shp and 02_03_nr_trn.shp, where 02-03 represents the year, r and nr stands for rice or non-rice, and trn stands for training set).

The non-rice training set was selected with a stratified sample in mind. That is, various crop types were selected to very roughly represent their proportion in the non-rice crops (2 maize, 1 soybean, 1 sorghum, 1 millet). It is important that both the rice and non-rice training sets do not include paddocks that are grossly unrepresentative of the overall class response. For example a very small proportion of the rice paddocks are not flooded by late November. So, if by chance we include one of these paddocks in our training set, the statistics developed from it will not really represent the normal case and may result in poor classification accuracy. Therefore, particular care must be taken to select a representative training set in order to achieve the required accuracies.
Once these shapefiles are organised, we will estimate the classification accuracy of rice based on the remaining known paddocks. The final validation shapefile will include all of the original paddocks from step 1 above minus those paddocks used for training in step 2. That is, the paddocks used for training the classification should not be used to estimate its accuracy, since they are no longer independent.

4.4 Estimating classification accuracy

Finally, these three shapefiles will be used in conjunction with an Avenue script and the GRID representation of ETM band 5 to define both the threshold used to classify rice versus non-rice and the accuracy defined from the final validation set of paddocks. The script summarises the mean ETM band 5 value for each paddock in the three shapefiles. It then calculates the threshold value as the average of the mean rice and mean non-rice responses from the two training sets. Then, it compares the validation paddocks known crop types to what this newly defined threshold would classify the paddock as in order to estimate accuracy.

The script called r_nr.ave should be loaded into a script editor window, and then compiled. Make sure that all three of the above shapefiles are loaded into the ArcView View and that all the records in the validation shapefile are selected. If there is no selection, the script will complain. The script also assumes that the view is the last thing to be active prior to running the script (this is due to the first line in the script where the view variable is set to the active document using the “av.GetActiveDoc” request). Therefore, if an error occurs right
off the bat and say's something like "A(n) Table does not recognise request GetThemes", then make the View active, then make the script active and then run it again – it should work this time. Another solution would be to attach this script to a button directly on the View's GUI (see ArcView help for details). Also **make sure that a GRID of ETM band 5 is in the view.** To convert the image to a GRID, simply click on Theme/Convert to Grid… from the View’s GUI and follow the prompts (the ArcView Spatial Analyst extension must also be already loaded).

The script is included in Appendix B as a backup of the original file and can be cut and pasted into the script window directly. **The script depends on a common field defined by the user in each of the three shapefiles.** This common field must contain an R in it for any paddocks that are rice and an NR in it for any paddocks that are non-rice. Currently, if the field has something different, then this script will need to change. **Also, make sure that these shapefiles all have unique ids** or the summary may not be correct. For example, when a new paddock is added to a current shapefile, the attributes of the new record will be set to zero; if 5 new paddocks are added, and their ids are all left zero, the last four will be classified the same as the first rather than each separately, resulting in a false estimate of the accuracy reported by this script (see Appendix B).

- Run the script as shown below:

Choose the validation paddock shapefile (This works off of the selection, so if you want all the paddocks to be considered within this shapefile, then they should all be selected):

![Paddock Selection](image1)

Then, the rice training set:

![RICE training set Selection](image2)

Then, the non-rice training set:

![Non-Rice Training Set Selection](image3)
Then, choose the field that contains the R and NR information:

And finally, choose the GRID file representing Band 5 of the late November image:

A new window should reveal where the output excel file is located. In this file is the threshold information and the estimation of accuracy:

The output from running this program should look like this:

<table>
<thead>
<tr>
<th>Name</th>
<th>NumNRsR</th>
<th>NumRsNR</th>
<th>TotalCount</th>
<th>Threshold</th>
<th>OverallAccuracy</th>
<th>KappaAccuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov_bnd5</td>
<td>2</td>
<td>1</td>
<td>63</td>
<td>75.5897</td>
<td>0.952381</td>
<td>0.903226</td>
</tr>
</tbody>
</table>

Validation Paddocks file: c:\vannie\tmp\rueben_rice_2002_2003\shapes\02_03_validation.shp
Rice Training Set file: C:\VanNiel\tmp\Rueben_rice_2002_2003\shapes\02_03_r_trn.shp
The NumNRasR reveals the number of NonRice paddocks that were classified as Rice (errors of commission), the NumRasNR shows how many Rice paddocks were classified as NR (errors of omission), the Threshold will be used later to classify the rice, and the Overall Accuracy (as a proportion) is the estimate of the accuracy based on the validation paddocks. The Kappa accuracy is another accuracy statistic useful when the sample sizes are very uneven.
5 Updating Paddock Boundaries

5.1 Introduction

The methods outlined for identification of rice depend on placing the remotely sensed signal within some sort of ‘context’. Basically, this means that we don’t just use the information from all the pixels in the image separately (per-pixel classification), but rather we also make use of the information that is surrounding these points at the same time. One of the most common ways to put remote sensing data into context for agricultural applications is by summarising the entire paddock (per-paddock classification). This requires a GIS layer of paddock boundaries.

As usually the hardest part of a mapping project is defining boundaries, this per-paddock method has a distinct advantage over per-pixel classifications. That is, since we know the potential boundaries of the phenomena that we wish to map before we map it, the hardest part of the mapping procedure is done before we start. This is also one of the reasons why we are able to get such high accuracies using such simple techniques (there are also other reasons, like homogeneous management practices of the landholders and the fact that we are really mapping standing water versus non-water, which is not too hard compared to lots of other things).

Unfortunately, there is also a distinct disadvantage to this per-field method: if the GIS boundaries are not spatially accurate or up-to-date (temporally accurate), then the results can be worse than a per-pixel classification. Therefore, assuring that the paddocks are both spatially accurate as well as appropriate for the current time period (growing season) is essential. Normally, drastic differences to paddock boundaries do not occur from year to year at the CIA, which means that keeping the GIS boundaries up-to-date is not a huge job. However, the more common changes where parts of paddocks (e.g., rice bays) are alternately included or omitted can be enough to alter the mean statistics of the paddock enough to misclassify the paddock. Therefore, these changes need to be updated in the GIS paddock boundary every year, or the resulting accuracies will not be as high as expected.

There are a number of ways that this updating of paddocks could take place, so this section is not really a definitive ‘recipe book’ for updating paddocks. The methods introduced here can be altered as need be.

The methods we used concentrated on updating ONLY the boundaries of those paddocks that were suspected of being rice. Since this included any paddocks that had any standing water, it was a pretty safe starting point:

1. First flooded areas on the November ETM image are defined using per-pixel classification of band 5 (1650nm), and subsequently converted to an ArcView shapefile.
2. Once these areas suspected of being ponded water (i.e., rice) are defined, they are then compared to the previously digitised paddock boundary GIS dataset.
3. Next, a decision is made about whether or not each of these paddocks needs to be updated using the following rather subjective rule:
 • If one of the previous year’s rice boundaries matches well with the area of ponded water defined from step 1, above, then this boundary can be used in the classification.
 • However, if the previously defined boundary and the classification from step 1, above provides a poor match, then the boundary will need to be updated. Ultimately, these boundaries need to be of high accuracy, which means digitising from previous aerial photos or by using a GPS unit in the field. However, if the analyst chooses, the initial digitisation of these changed paddocks can occur from the satellite imagery, which allows for an “approximate” boundary for classification.
These “approximate” boundaries should be identified separately so that the ones that are classified as rice can be updated in the future from either a previous aerial photograph or by using a GPS in the field. When the difference is small (for example, due to a missing rice bay in a paddock), this defines a change that can probably be fixed from past aerial photos. When the change is too big to be identified properly from previous photos, someone will need to update the boundary using a GPS unit in the field. Remember, the date of update, who recorded the GPS data, and who updated the GIS boundary could be recorded in the GIS paddock boundary file.

These three steps are outlined below.

5.2 Defining flooded areas on the imagery

The purpose of this initial pass is only to assess which paddocks may need updating and requires a per-pixel classification. Since water absorbs light in the wavelengths around 1650 nm where band 5 is centred, the rice areas during this time of year have very low values. Also, non-rice paddocks are predominantly some much drier surface (e.g., soil, stubble, or green crops that are not near canopy closure), revealing very high values in ETM band 5. Therefore, it is generally very easy to classify water versus non-water (which is really what we are doing); we assume that all the flooded paddocks are rice. We will put these values in a per-paddock context later. Be careful to note whether a heavy rainfall occurred just prior to image acquisition as this might influence the results of this analysis.

- First, the GRID of ETM band 5, generated in the Ground Validation section, above is classified using the threshold value determined in that same section. As determined above, the threshold between rice/non-rice from our training sets was **75.5838**.
- This entails using the “Map Calculator” in the Analysis/ menu. Set up the equation to define the classes based on the above threshold (see figure below):

![Map Calculation 1](image)

- This will result in the calculation of a GRID that has a two classes: zero’s for non-water areas and one’s for water (see below).
• This GRID can then be saved to a temporary shapefile using Theme/Convert to Shapefile… command. Once this is complete, use the shapefile Query Builder to select only the polygons with Gridcode = 1, as seen below :
• Run Theme/Convert to Shapefile again with this selection and this will result in a shapefile of the areas predominantly covered by water on this image date (see below).

This shapefile can then be used to compare the extent of water for this current date to previously digitised paddocks. If the match is good, then the old paddock boundary is OK to use (see below for an example of a good match between three previously defined boundaries in red to the water classification of this year).
• However, if the match is not good (e.g., due to a change like adding more rice bays in this year when compared to previous years - see below) then these boundaries need to be UPDATED. In this example, a previous year’s air photos might be used to extend the boundary as a fundamental change to the boundary has probably not occurred. For other circumstances, the updating of the boundary will require a GPS unit in the field.

• Every area of classified water will need to be checked against paddock boundaries and similar decision will need to be made.
6. **Identifying Summer Rice Paddocks (Optional Step)**

The procedures in this chapter are optional. For the 2003/04 season, all rice paddocks were classified by looking at the map of standing water (generated by the steps in the last chapter) and using it to select paddock measurements from previous years for this year's rice. The per-paddock classification process is still described in detail for completeness and is thus available for use in this or other similar applications if the user so chooses. There is no need to perform this task, however, if the per-pixel visual inspection approach is taken. Remember, if you are not going to perform the following per-paddock classification, then it is a good idea to make use of the "Waterways" database that CICL records for every farm. In this database, the landholder's estimated rice area and the volume of water applied to rice are recorded and can be used as a guide in determining the area of rice for each farm. When we know the area, determination of rice paddocks by visual assessment is easier.

6.1 **Introduction**

As discussed before, the methods outlined for identification of rice depend on placing the remotely sensed signal within a per-paddock context, which requires the updating of some boundaries every year (see above). After the publication of research using a moisture index based on the 'depth' of ETM band 5 reflectance compared to that of ETM bands 4 and 7, it was found that simply using ETM band 5 alone provides just as accurate (or better) results. Also, the added benefit is that using a single band is even easier to process. The methods here depend on the previous sections already being accomplished. That is, the ground validation should be compiled, the rudimentary geometric offset should be applied, the rice and non-rice training sets should be defined, the threshold should be calculated, and the paddock boundaries should be updated. The basic steps that will be covered in this section include:

- Calculate the mean ETM band 5 value for every paddock; and
- Classify each paddock into a rice or non-rice class by comparing the threshold defined from the training sets to the mean paddock values.

Using a subset of the r_nr.ave Avenue script called *sum_grid.ave* (see Appendix C), the mean value of each paddock will be summarised and will be saved to a separate shapefile (saved to your ArcView working directory – to change this, look in File/Set Working Directory). The inputs are a paddock theme (this time, it is the full set of paddocks over the entire CIA instead of the validation set of paddocks), and the GRID of ETM band 5.

6.2 **Calculating the mean ETM band 5 value for every paddock**

Previously, (in the ground validation section) we used a similar script to calculate a *per-pixel classification* for the purposes of updating paddock boundaries. Now, we will rerun the same basic steps *using the information from that original processing (i.e., the threshold determined from the training sets, and the ETM band 5 GRID)*. Whatever paddock boundaries are input into this sum_grid.ave program will be summarised statistically, including the mean of each paddock (which is what we will subsequently use to classify the paddocks as either rice or non-rice). Therefore, we want at least all of the boundaries suspected of being rice, defined previously. In this example, we use all of the paddock boundaries. Remember, the paddock theme should have all of its records selected. Also make sure that the GRID of ETM band 5 is in the view.

- First, the script will need to be loaded, compiled, and ran (see ESRI and previous section for details).
Once the script is run, follow the prompts:

Choose the full set of paddocks shapefile (*should all be selected*):

![Paddock Selection](image)

Choose the GRID file representing Band 5 of the late November image:

![Index Selection](image)

After completion of running this script a new shapefile is added to the view. This shapefile is a duplicate of the paddock theme input into it, except that a set of fields are added to the database file (dbf). These new fields are the statistics we will use to classify rice – specifically, the mean value for each paddock (see below).
6.3 Classifying each paddock to rice or non-rice

Previously (ground validation section 4), the threshold was calculated as 75.5838. This threshold will be used to select any paddocks that are less than or equal to this value. It is these paddocks that we will classify as rice. There are various ways to approach this last step, so this is more of a guide than a definitive list of instructions. In this case, we use the query builder to select only those paddocks that are less than or equal to the threshold and then save them out to a separate shapefile.

First, use the query builder to select any paddocks in the new theme (generated above, step 1 of this section) that are less than or equal to the previously defined threshold of 75.5838 (of coarse, this threshold will change every year or if different training sets are used).

- Click on “New Set”. This results in a subset of the original number of paddocks being selected (see below):

![Query Builder Screenshot](image-url)
Now that the rice paddocks are selected, if we click on Theme/Convert to Shapefile…, the rice paddocks can be saved out to a separate shapefile – I called mine 02_03_classif_rice.shp (see below).

These are our final rice paddocks. Optionally, these can be adjusted by preventing paddocks which contained previous winter cereals from being classified as rice. This optional section is discussed below.
7 Identifying Winter Cereal Paddocks for Exclusion (Optional Step)

7.1 Introduction

An optional processing tactic is to adjust the previously classified rice paddocks (defined from the step above) by not allowing any paddocks to be classified as rice if they contained a crop during the preceding winter growing season. The premise is that the winter crops are not usually harvested until late November; since the recommended time for planting rice is early October, almost no farmers will ever plant a rice crop immediately after a winter crop. Since it is very easy to define cropped areas from non-cropped areas using the Normalised Difference Vegetation Index (NDVI), we are able to detect any paddocks that were winter cereals and prevent them from being classified as summer rice. An October image should be ideal for this since the winter crops should still be green, while the summer paddocks should be in some state of preparation for planting (if they have not been sown yet), but not yet green. Also, during this time, most winter pasture should be dried out and being prepared if there is going to be a summer crop.

If you have purchased an October image, then all of the previously discussed steps will need to be applied to this image. That is, importing (in this case) ETM bands 3 (red) and 4 (NIR) into ArcView, calculating and applying the geometric offset (it should be the same for all bands within the October image), and defining two more training sets (one winter cereal, and one non-cropped training set). Please see the previous notes on all of these steps. The steps for doing this follow the methods for identifying rice, so they will only be covered very briefly. The steps include:

- Calculation of NDVI on an October ETM image;
- Define small training set of known winter cereal and non-cropped paddocks and determine threshold for classifying winter cereals from the October NDVI image;
- Calculate mean NDVI for each paddock using the sum_grid.ave program; and
- Identify and eliminate paddocks previously classified as rice which are also classified as having a winter cereal crop (these are most likely not rice).

7.2 Calculating the NDVI on an October ETM image

Using the techniques discussed previously, ETM bands 3 (red waveband) and 4 (NIR waveband) of the October image should be imported into ArcView and a different geometric offset should be applied. Note, the steps for calculating the geometric offset will be the same, but will need to be redone for the different image (before we were using a November image). Then, convert both of these bands to GRIDs as before and add them to the view.

The formula for the NDVI is:

\[
\text{NDVI} = \frac{(\text{NIR} - \text{red})}{(\text{NIR} + \text{red})}
\]

or for ETM bands,
NDVI = (Band4 − Band3)/(Band4 + Band3)

The NDVI is a normalised index which ranges between -1 and 1, and is directly related to "greenness". This equation can be calculated in the Analysis/"Map Calculator" (see pic below) using the following equation (and replacing the red variables with the correct names based on your own data). The .float term maintains the floating point precision in the calculation (otherwise everything is converted to either 1's or 0's by default). The * 1000 term is a scalar (scales the values of the NDVI between -1000 and 1000 (instead of between -1 and 1), and the .int term converts this result to integer data. The resulting data is integer data (with a precision of 3 decimal places) because the data is scaled between -1000 and 1000. That is, a value of 459 equals a real NDVI value of 0.459:

\[
((\text{Oct_bnd4} \cdot \text{float-} \text{Oct_bnd3}) / (\text{Oct_bnd4} + \text{Oct_bnd3}) \cdot 1000)\cdot\text{int}
\]

Using the Theme/Convert to Grid command, you can convert this grid to your local hard disk with a relevant name (like octndvi):
7.3 Define small training set of known winter cereal and non-cropped paddocks

Next, two more training sets (winter cereal and non-cropped) will be used to derive the threshold that will be used to define which pixels or paddocks are winter cereal and which are not. Again, these training sets can be defined in various ways, but you will most likely receive plenty of choices from the landholder surveys, or from field observations. In this case, we used landholder surveys to determine paddocks where the crop types were known (as above). From these, 5 winter cereal and 5 non-winter-cropped paddocks were arbitrarily selected and saved to separate shapefiles, see figure below (e.g., 02_03_wc_trn.shp and 02_03_nwc_trn.shp, where 02-03 represents the year, wc and nwc stands for winter cereal or non-winter cereal, and trn stands for training set). The non-winter cereal training set needs to be selected from paddocks that did not have any previous winter crop (these should have a relatively low NDVI value compared to winter cropped paddocks in October).
Now, the threshold needs to be calculated. This can be done in a number of ways. For example, you could run the `sum_grid.ave` script and then calculate the average of the means between the two training sets “manually”. Otherwise, you can run the `r_nr.ave` script and disregard the accuracy information. That is, have the script calculate the threshold for you. If using the script to calculate the threshold, ignore the accuracy statistics, they are meaningless. See the menus below for the input for this option. If using the `r_nr.ave` script, the rice and non-rice prompts will need to be replaced (in your mind) by winter cereal and non-winter cereal:

Choose the shapefile containing the paddocks that have already been classified as rice (**should all be selected**):

Then, the *winter cereal* training set:
Then, the non-winter cereal training set:

Then, choose the field that contains the R and NR information (*This actually doesn’t matter for the winter cereal processing, but has to be filled in for the script to finish*):

And finally, choose the GRID file representing the NDVI of the October image:

A new window should reveal where the output excel file is located. In this file is the threshold information (*and the estimation of accuracy, which is meaningless for the winter cereal application*):
The output excel csv file should look something like this. *Remember, only use the threshold value from this file:*

<table>
<thead>
<tr>
<th>Name</th>
<th>NumNRasR</th>
<th>NumRasNR</th>
<th>TotalCount</th>
<th>Threshold</th>
<th>OverallAccuracy</th>
<th>KappaAccuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octndvi</td>
<td>0</td>
<td>39</td>
<td>381</td>
<td>182.912</td>
<td>0.897638</td>
<td>0</td>
</tr>
</tbody>
</table>

Validation Paddocks file: c:\vanniel\tmp\02_03_classif_rice.shp
Rice Training Set file: c:\vanniel\tmp\ruuben_rice_2002_2003\shapes\02_03_wc_trn.shp
Non-rice Training Set file: c:\vanniel\tmp\ruuben_rice_2002_2003\shapes\02_03_nwc_trn.shp
Common Validation Field: Crop2003

7.4 Calculate mean NDVI for each paddock using the `sum_grid.ave` program

As before, the classification is put into a field context by using a paddock boundary shapefile to calculate the mean NDVI value. These mean paddock values are then compared to the threshold calculated above. *However, an additional step is required if you are using a shapefile that already contains the statistics fields in it (that is, if you have already run `sum_grid.ave` on the input paddock theme). You will need to* make these fields “invisible” so ArcView does not get confused later as to which mean field to use. To do this, simply make the paddock theme active (in this case, 01_03_classif_rice.shp, and then open it’s theme table. Go to the Table menu and click on “Properties”. When this new menu pops up, “uncheck” the checkboxes next to all of the statistics fields that were generated from the previous run of `sum_grid.ave` (most importantly, the “Mean” field, see below):
Now that ArcView does not “see” these fields, we can run sum_grid.ave on this paddock theme and the statistics that come out will be based on the new index theme (in this case, the NDVI for October):

Choose the set of paddocks shapefile, in this case, those classified as rice *(should all be selected)*:

Choose the GRID file representing October NDVI image:
After completion of running this script a new shapefile is added to the view. This shapefile is a duplicate of the paddock theme input into it, except that a set of fields are added to the dbf. These new fields are the statistics we will use to refine the classification of rice – specifically, the mean value for each paddock (see below).

7.5 Identify and eliminate rice paddocks that had a winter crop

Now that we have the mean paddock values and the threshold, it is just a matter of identifying which paddocks from those already classified as rice are now identified as having a winter cereal. This can be accomplished by querying the output shapefile, above with the query builder (the hammer icon in the view GUI). As before, select those paddocks that meet the criteria defined by the threshold. In this case, however, we are interested in those paddocks that are greater than or equal to the threshold (those paddock previously classified as rice that had very high NDVI in October):
First, use the query builder to select any paddocks in the new theme (generated above, step 1 of this section) that are greater than or equal to the previously defined threshold of 182.912 (of coarse, this threshold will change every year or if different training sets are used).

In this case, two paddocks are selected (see image below).
These two paddocks had mean values well above the threshold (both greater than 375), and are most probably not rice (that is, they were heavily vegetated in October). Because of this, the final shapefile representing the classification of rice should be saved out with these adjustments. To do this, from the Table GUI click on the Edit/Switch Selection option, and then from the View GUI, click on Theme/Save to Shapefile. This selects all the other paddocks except these two which have been classified as winter cereals, and then saves them to a separate shapefile. Remember to use a name for the output that makes sense to you. I have used the name, 02_03_classif_rice_wc_mask.shp. And, as you can see below, these two paddocks are not included in my new shapefile:

If these paddocks (the ones that have been removed) coincide with the original paddocks that were used for validation (i.e., accuracy assessment), then our estimation of accuracy will now need to be reassessed. In this case, these two paddocks were not in our validation set, so our estimate of accuracy remains the same. In other words, we don’t really know whether we have just improved the accuracy or made it worse. However, from past studies, it is reasonably safe to assume that we have just made it better. If we look at the mean November Band5 values for these two paddocks, they were just barely under our November Band5 threshold of 75 (one was 67 and the other was 74) – this also makes us more confident that we have done the right thing, since not only did both paddocks show a strong crop signal in October, but neither paddock showed a very strong water signal in our November image.
8 Rice Administration

Once the rice areas have all been completed and you are satisfied that they are correct, you can start to generate the information from them required for rice administration.

8.1 Adding attributes to rice areas

The first step is to add a field listing areas in hectares to the attributes table of the rice area shapefile. This can be achieved by running the “AreaMeasurement” script, a copy of which can be found at m:\esri\AV_GIS30\ARCVIEW\Samples\Scripts. This is a very simple script to use.

This script will add two new fields to the shapefile – area (in square metres) and perimeter (in metres). To view the area of each polygon in hectares, add a new field called “Area_ha” with one decimal place. You will first need to start editing the table and make the heading “Area_ha” active. Under the “Field, Calculate” option you can run a calculation in which you divide the values in the “Area” field by 10,000. All the values will be automatically filled in.

Next you will need to append the attributes from the shapefile “cia_external” to the rice areas. In particular the attributes that we require are farm numbers, property ID and outlet numbers. It might be expected that this could be achieved by straightaway doing a simple spatial join (using the Geoprocessing Wizard). However, this option relies on the rice polygons being entirely contained within the farm boundaries. Due to slight differences in the georeferencing of our GIS layers, including the aerial photographs, this is not possible. You will therefore need to convert the rice areas to centroids (points at the centre of each polygon) to enable the spatial join to occur. The spatial join is performed as follows:

- Ensure that there is a field in the attributes table of the rice areas called ID and that every record in the attributes table has a unique ID number. You can add these numbers to the table if they are not already there by running the increment script. This can be found in m:\esri\AV_GIS30\ARCVIEW\Samples\Scripts. This will generate a field called “Inc”. By doing a field calculation as described above for hectares, you can give the field called ID the same numbers as in “Inc”. Delete the “Inc” field.
- Load the “Xtools” extension in the ArcView project. A window will appear in which you can change the default units to metres and hectares. Close the window.
- An “Xtools” option will appear as one of the headings at the top of the ArcView window. When you click on the heading there is a long list of options. Click on “Convert shapes to centroids”. Follow the instructions and select the rice areas theme as the theme to convert to centroids. Store the new file “Cntrs” in X:\Temp.
- Open the attributes table of Cia_external. Click on Table\Properties and un-tick the data that you do not need. As stated earlier, the attributes you will need are farm numbers, property ID and outlet numbers. Click OK.
- You can now use the Geoprocessing Wizard to perform a spatial join. You may need to load the “Geoprocessing” extension. Then go to View\GeoProcessing Wizard. Select the option “Assign data by location (Spatial Join)” and click Next. Assign data to “Cntrs” and assign data from “Cia_external”. Click Finish.
- Open the attributes table of “Cntrs”. You will see that the three fields we require have been appended with data for every record in the table. If you wish to redo the spatial join for some reason, remove the join by clicking on Table\Remove All Joins.
- You now need to export the attributes table for “Cntrs” as a dbase file to X:\Temp.
- In the project window, click on Tables and then Add. Navigate to the table you exported. The table will appear when you add it in. In the table properties ensure only the farm numbers, property IDs and outlet numbers are displayed. Make the “ID” heading active. Open the attributes table for the rice areas and make the “ID”
heading active. It is important that you make the “ID” heading for the rice areas table active after that for the dbase table. Click Table\Join to append the attributes from the dbase table to the attributes table of the rice areas. Close the tables when you are satisfied the table join has occurred successfully.

- Convert the rice areas shapefile to a new shapefile. This will preserve the attributes that were generated by the table join in the new shapefile. All the required attributes have now been appended to the rice areas shapefile.

8.2 Location of rice paddocks on suitable ground

The location of rice paddocks on suitable ground as delineated by the rice soil suitability classification can be determined by using the GeoProcessing Wizard. Use the clip option to identify if any rice was grown on unsuitable ground. The same option can be used to determine which rice areas were grown on marginal (1 year in 4) ground. For these areas further overlays are required to see if they were grown with rice in any of the previous three years. To perform each clip the rice suitability shapefile should be displayed by “type” (using the theme properties) to isolate unsuitable areas from marginal areas and vice versa.

8.3 Total rice area and rice water usage

The rice areas can now be exported for use in rice administration. Open the attributes table of the new shapefile and export to an appropriate location on the network. The file can be modified and saved in Excel.

The information exported can be used to sum the rice areas for each farm, enabling comparison with the allowed rice areas for the current season.

A report can be obtained from the Waterways database with rice water use by block (outlet number). The outlet numbers relating to the rice areas can be matched with the outlet numbers relating to rice water use, and the rice water usage in ML/ha can then be calculated for each block.
References

Appendix A

ORDER FORM – LANDSAT 7 ETM+ DATA

PLEASE NOMINATE YOUR BUSINESS AND INDUSTRY SECTOR AND APPLICATIONS FROM THE OPTIONS BELOW

- **Business/Industry Sector:**
 - Local Government
 - Agriculture
 - Urban Planning
 - Environmental Monitoring
 - Other (please specify)

- **Industry Sector:**
 - Agriculture & Forestry
 - Conservation & Environment
 - Communications
 - Emergency Services
 - Other (please specify)

- **Applications:**
 - Asset Management
 - Crop Analysis
 - Emergency / Disaster
 - Environmental Monitoring
 - Other (please specify)

PLEASE ENTER YOUR PREFERRED OPTIONS FROM THE PARAMETERS BELOW:

- **Scene:**
 - LANDSAT ETM
 - Acq. Date: Day - Month - Year

- **Map System:**
 - UTM 1566 Zone 50N

SECTION A - RAW DATA OR PATH IMAGE

- **Selector:**
 - Raw Data
 - Raw Image
 - Path Image

- **Format:**
 - Standard
 - Other

- **Latitude:**
 - Deg: 34
 - Min: 21
 - E.: 160

- **Resampling Kernel:**
 - Cubic Convolution

DIGITAL PRODUCT

- **Media:**
 - CD

- **Photographic Product:**
 - Print

- **Print Size:**
 - Large (10" x 8"

COMMENTS

I acknowledge that I have been provided with a copy of the end-user licence terms applicable to these data products, and am aware that these terms may be inspected at www.ausig.gov.au/ausig/services/permissions.htm.

The terms are accepted by the end-user.

End-user's Signature: ____________________________ Date: ____________________________

ACRES is a business unit of AUSIG, Department of Industry, Science and Resources.

CSIRO Land and Water
Appendix B

DiskFile : r_nr.ave : Rice_non-rice
Programmer : Tom Van Niel
Organization: CSIRO Land and Water
Created : 24-June-2003
Revisions :

Function : Summarise accuracy of rice/non-rice classification based on a validation paddock shapefile and two training paddock shapefiles (one rice and one non-rice). Outputs to an excel comma separated text file. Reports overall & Kappa accuracy & the threshold defined from the training sets.

Called By : View GUI
Notes : Assumes 4 input files - 1 validation paddock shapefile, 1 rice paddock training shapefile, 1 non-rice paddock training shapefile, and at least 1 grid. The mean grid value is calculated for each paddock in the shapefiles. The average of the two training sets is used as a threshold for classifying rice vs non-rice. Note, there also must be a common field in all of the shapefiles called "Id". This field MUST contain unique numbers within any one shapefile, or the zonal stats command used in this program chokes. The validation field is a field describing which paddocks withing the validation shapefile are rice or non-rice. The naming convention of "R" for rice and "NR" for non-rice must be used for the program to work properly.

Sumgrid - summarise grid statistics for input shapefile - output new shapefile with statistics

Initialize Variables

theView = av.GetActiveDoc
thethemes = theView.GetThemes
GrList = {}
FList = {}
AccuracyLst = {}
aPrj = theView.GetProjection

' Put themes in separate lists for feature and Grid themes
For each Thm in theThemes
 If (Thm.Is(GTheme)) then
 GrList.add(Thm)
 Elseif (Thm.Is(fTheme)) then
 FList.add(Thm)
 End
End

' ERROR CHECK LISTS
If (Flist.Count = 0) then
 System.Beep
 MsgBox.info("No feature Themes to Select From, must add Paddock Theme to the View","ERROR")
 Return NIL
End
If (GrList.Count = 0) then
 System.Beep
 MsgBox.info("No Grids to Select From, must add a Grid to the View","ERROR")
 Return NIL
End

' Get info from User and Error Handle

' Get Paddock Theme
Padd_theme = MsgBox.Choice(FList,
 "Choose the Paddock Theme","Paddock Selection")

' Check for Cancel, Exit if true
If (Padd_theme = NIL) then
 System.Beep
 Return NIL
End

' Get Rice Training Set theme
r_ts_theme = MsgBox.Choice(FList,
 "Choose the Rice Training Set Theme","RICE training set Selection")
' Check for Cancel, Exit if true
If (r_ts_theme = NIL) then
 System.Beep
 Return NIL
End

' Get Non-Rice Training Set theme
nr_ts_theme = MsgBox.Choice(FList,
 "Choose the Non-Rice Training Set Theme","Non-Rice Training Set Selection")

' Check for Cancel, Exit if true
If (nr_ts_theme = NIL) then
 System.Beep
 Return NIL
End

' Get the field to use for validation
FldLst = Padd_theme.GetFtab.GetFields
vldnFld = MsgBox.Choice(FldLst,"Choose Field used for validation","CROP Type Field Selection")
vldnStrng = vldnFldAsString
If (vldnFld = NIL) then
 System.Beep
 Return NIL
End

' Make sure there is a feature selection on Paddock Theme
PaddFtab = Padd_Theme.GetFtab
OrigPaddBit = PaddFtab.GetSelection.Clone
If (OrigPaddBit.Count = 0) then
 System.Beep
 MsgBox.info("No Paddock Theme features selected, please try again.","ERROR")
 Return NIL
End

' Get Index (GRID) theme to summarize
IndexLst = MsgBox.MultiList(GrList,
 "Choose the Index (Grid) Theme(s) to Summarize","Index Selection")
' Check for Cancel or no selection, Exit if true
If ((IndexLst = Nil) or (IndexLst.Count = 0)) then
 System.Beep
 Return Nil
End

' Run ZonalStats on Index Grid for paddocks theme
' Export paddock theme to a new shapefile so it can be joined with zstats later
For each Index_Theme in IndexLst
 p_basename = Index_Theme.GetGrid.GetSrcName.GetFileName.GetBaseName
 newPaddFtab = Padd_Theme.ExportToFTab
 (av.GetProject.GetWorkDir.MakeTmp(p_basename,"shp"))
 zoneField = newPaddFTab.FindField("Id")
 aFN = av.GetProject.GetWorkDir.MakeTmp("zstat","dbf")
 zt = Index_Theme.GetGrid.ZonalStatsTable(newPaddFtab, aPrj, zoneField, FALSE, aFN)
 if (zt.HasError) then return NIL end
 ztJoinFld = zt.FindField("Id")
 ' Join Shape file's FTab to zt
 newPaddFtab.Join(zoneField,zt,ztJoinFld)
 ' Add new padd shapefile to view
 ' newPaddFTheme = FTheme.Make(newPaddFTab)
 ' theview.addtheme(newPaddFTheme)

'Summarise training sets - get mean and std for rice training set and for nr training set

'Summarise Rice first

' Run ZonalStats on Index Grid for rice training set
r_ts_FTab = r_ts_theme.GetFtab
rFN = av.GetProject.GetWorkDir.MakeTmp("zstat","dbf")
r_zoneField = r_ts_FTab.FindField(vldnStrng)
If (r_zoneField = Nil) then
 MsgBox.Info("Rice training set field not the same as paddock theme, exiting","ERROR")
 Return Nil
End
r_zt = Index_Theme.GetGrid.ZonalStatsTable(r_ts_FTab, aPrj, r_zoneField, FALSE, rFN)
if (r_zt.HasError) then return NIL end
rzCountField = r_zt.FindField("Count")
rzSumField = r_zt.FindField("Sum")
rzTotCount = 0
rzTotSum = 0
rzCount = 0
rzSum = 0
For each r in r_zt
 rzCount = r_zt.ReturnValue(rzCountField, r)
 rzSum = r_zt.ReturnValue(rzSumField, r)
 rzTotSum = rzTotSum + rzSum
 rzTotCount = rzTotCount + rzCount
End
r_ts_Mean = rzTotSum/rzTotCount

'summarise training sets - get mean and std for NON-RICE training set and for nr training set

' Summarise Non-Rice

' Run ZonalStats on Index Grid for non-rice training set
nr_ts_FTab = nr_ts_theme.GetFtab
nrFN = av.GetProject.GetWorkDir.MakeTmp("zstat","dbf")
nr_zoneField = nr_ts_FTab.FindField(vldnStrng)
If (nr_zoneField = Nil) then
 MsgBox.Info("Non-rice training set field not the same as paddock theme, exiting","ERROR")
 Return Nil
End
nr_zt = Index_Theme.GetGrid.ZonalStatsTable(nr_ts_Ftab, aPrj, nr_zoneField, FALSE, nrFN)
if (nr_zt.HasError) then return NIL end
nrzCountField = nr_zt.FindField("Count")
nrzSumField = nr_zt.FindField("Sum")
nrzTotCount = 0
nrzTotSum = 0
nrzCount = 0
nrzSum = 0
For each nr in nr_zt
 nrzCount = nr_zt.ReturnValue(nrzCountField, nr)
 nrzSum = nr_zt.ReturnValue(nrzSumField, nr)
 nrzTotSum = nrzTotSum + nrzSum
 nrzTotCount = nrzTotCount + nrzCount
End
nr_ts_Mean = nrzTotSum/nrzTotCount

'Calculate Threshold value based on these means:
Threshld = (r_ts_Mean + nr_ts_Mean) / 2

' Calculate Accuracy of Rice vs NonRice based on Threshld values
' Assumes certain field naming convention

' Initialise Variables
TotalCount = 0
NumClassR = 0
NumClassNR = 0
NumNRasR = 0
NumRasNR = 0
TotalNumR = 0
TotalNumNR = 0

' Get Paddock Shapefile from user

' Query Ftab based on Threshld
np_vldnFld = newPaddFTab.FindField(vldnStrng)
MeanFld = newPaddFTab.FindField("Mean")
If (MeanFld = NIL) then
 MsgBox.ERROR("Could not find Mean field","MEAN FIELD ERROR")
 Return NIL
End
For each record in newPaddFtab
 TotalCount = TotalCount + 1
 vldnValue = newPaddFTab.ReturnValue (np_vldnFld, record)
 MeanValue = newPaddFTab.ReturnValue (MeanFld, record)
 If (vldnValue = "R") then
 TotalNumR = TotalNumR + 1
 Else
 TotalNumNR = TotalNumNR + 1
 End
' Determine Direction of comparison, i.e., if rice mean is lower than nr mean, than use <= symbol
If (r_ts_Mean <= nr_ts_Mean) then
 If (MeanValue <= Threshld) then
 NumClassR = NumClassR + 1
 If (vldnValue <> "R") then
 NumNRasR = NumNRasR + 1
 End
Else
 NumRasNR = NumRasNR + 1
End
NumClassNR = NumClassNR + 1
If (vldnValue = "R") then
 NumRasNR = NumRasNR + 1
End
Else
 If (MeanValue >= Threshld) then
 NumClassR = NumClassR + 1
 If (vldnValue <> "R") then
 NumNRasR = NumNRasR + 1
 End
 Else
 NumClassNR = NumClassNR + 1
 If (vldnValue = "R") then
 NumRasNR = NumRasNR + 1
 End
 End
End
NumRasR = TotalNumR - NumRasNR
NumNRasNR = TotalNumNR - NumNRasR
Prop_observed = (NumRasR + NumNRasNR)/TotalCount
Prop_expected = ((TotalNumR * NumClassR) + (TotalNumNR * NumClassNR))/(TotalCount^2)
OverallAccuracy = ((NumNRasNR + NumRasR) / TotalCount)
KappaAccuracy = (Prop_observed - Prop_expected)/(1 - Prop_expected)
AccuracyStrng = Index_Theme.AsString+","+NumNRasR.AsString+","+NumRasNR.AsString+","+TotalCount.AsString+","+Threshld.AsString+","+OverallAccuracy.AsString+","+KappaAccuracy.AsString
AccuracyLst.Add(AccuracyStrng)
End
' Write accuracy info to a text
outFN = av.GetProject.GetWorkDir.MakeTmp("acc","csv")
outFile = LineFile.Make(outFN,#FILE_PERM_WRITE)
outFile.WriteElt("Name, NumNRasR, NumRasNR, TotalCount, Threshold, OverallAccuracy, KappaAccuracy")
For Each Strng in AccuracyLst
 outFile.WriteElt(Strng)
End
' Write metadata info at the end
outFile.WriteLine("Validation Paddocks file: " & padd_theme.GetSrcName.GetFileName.asString)
outFile.WriteLine("Rice Training Set file: " & r_ts_theme.GetSrcName.GetFileName.asString)
outFile.WriteLine("Non-rice Training Set file: " & nr_ts_theme.GetSrcName.GetFileName.asString)
outFile.WriteLine("Common Validation Field: " & vldnFld.asString)
outFile.WriteLine("Time: " & Date.Now.AsString)

' Close output file
outFile.Close

'Tell user where output file is
MsgBox.Info("Output file is" & outFN.asstring,"OUTPUT FILE")
av.ClearStatus
av.ShowMsg("Output file is" & outFN.asstring)
Appendix C

' ***
' DiskFile : Sumgrid: sumgrd.ave
' Programmer : Tom Van Niel
' Created : 2002
' Revisions : 11-June-2004/TVN/added more error traps and made code
' more general
' Function : Summarises a grid dataset by each polygon in a polygon
' dataset. Performs a zonalstats, resulting in min, mean,
' max, majority, etc. values of the grid for ea. polygon
' Called By : View GUI
' Calls : None
' Assumptions: Assumes that the view was the last active document before
' running the script.
' Must have a selection on the polygon theme.
' ***

' Initialize Variables

theView = av.GetActiveDoc
thethemes = theView.GetThemes
GrList = {}
FList = {}
aPrj = theView.GetProjection

' Put themes in separate lists for feature and Grid themes
For each Thm in theThemes
 If (Thm.Is(GTheme)) then
 GrList.add(Thm)
 Elselsef(Thm.Is(fTheme)) then
 FList.add(Thm)
 End
End

' ERROR CHECK LISTS
If (Flist.Count = 0) then
 System.Beep
 MsgBox.info("No feature Themes to Select From, must add Polygon Theme to the View","ERROR")
 Return NIL
End
If (GrList.Count = 0) then
 System.Beep
 MsgBox.info("No Grids to Select From, must add a Grid to the View","ERROR")
 Return NIL
End

' Get info from User and Error Handle
' Get Polygon Theme
Plygn_theme = MsgBox.Choice(Flist = FList,
 "Choose the Paddock Theme","Paddock Selection")

' Check for Cancel, Exit if true
If (Plygn_theme = NIL) then
 System.Beep
 Return NIL
End

' Make sure there is a feature selection on Plygn Theme
PlygnFtab = Plygn_Theme.GetFtab
OrigPlygnBit = PlygnFtab.GetSelection.Clone
If (OrigPlygnBit.Count = 0) then
 System.Beep
 MsgBox.info("No Polygon Theme features selected, please try again.","ERROR")
 Return NIL
End

' Put Fields from Plygn theme in a list and allow user to select the field to summarize
' Make sure they are only numeric fields
tmpFldList = PlygnFtab.GetFields
theFldList = {}
For each Fld in tmpFldList
 If (Fld.IsTypeNumber) then
 theFldList.Add(Fld)
 End
End
theFld = MsgBox.List(theFldList = theFldList,
 "Choose Field to summarize","Summary Field")

' Get Index (GRID) theme to summarize
IndexLst = MsgBox.MultiList(GrList,
 "Choose the Index (Grid) Theme(s) to Summarize","Index Selection")

' Check for Cancel or no selection, Exit if true
If ((IndexLst = Nil) or (IndexLst.Count = 0)) then
 System.Beep
 Return Nil
End

' Run ZonalStats on Index Grid
For Each Index_Theme in IndexLst
 aFN = av.GetProject.GetWorkDir.MakeTmp("zstat","dbf")
 zoneField = PlygnFtab.FindField(theFld.AsString)
 If (zoneField = NIL) then Return NIL End
 zt = Index_Theme.GetGrid.ZonalStatsTable(PlygnFtab, aPrj, zoneField, FALSE, aFN)
 If (zt.HasError) then
 System.Beep
 MsgBox.info("Problem calculating zonal stats, please try again or contact author.","ERROR")
 Return NIL
 End
 ztJoinFld = zt.FindField(theFld.AsString)
 If (ztJoinFld = NIL) then
 System.Beep
 MsgBox.info("ztJoinFld not found, please try again or contact author.","ERROR")
 Return NIL
 End
 PlygnFtab.Join(zoneField,zt,ztJoinFld)
 basename = Index_Theme.GetGrid.GetSrcName.GetFileName.GetBaseName
 newPlygnFtab = Plygn_Theme.ExportToFTab
 (av.GetProject.GetWorkDir.MakeTmp(basename,"shp"))
 theview.addtheme(newPlygnFTheme)
End